Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Viruses ; 14(10)2022 10 09.
Article in English | MEDLINE | ID: covidwho-2143671

ABSTRACT

For industrial vaccine production, overwhelming the existing antiviral innate immune response dominated by type I interferons (IFN-I) in cells would be a key factor improving the effectiveness and production cost of vaccines. In this study, we report the construction of an IFN-I receptor 1 (IFNAR1)-knockout DF-1 cell line (KO-IFNAR1), which supports much more efficient replication of the duck Tembusu virus (DTMUV), Newcastle disease virus (NDV) and gammacoronavirus infectious bronchitis virus (IBV). Transcriptomic analysis of DTMUV-infected KO-IFNAR1 cells demonstrated that DTMUV mainly activated genes and signaling pathways related to cell growth and apoptosis. Among them, JUN, MYC and NFKBIA were significantly up-regulated. Furthermore, knockdown of zinc-fingered helicase 2 (HELZ2) and interferon-α-inducible protein 6 (IFI6), the two genes up-regulated in both wild type and KO-IFNAR1 cells, significantly increased the replication of DTMUV RNA. This study paves the way for further studying the mechanism underlying the DTMUV-mediated IFN-I-independent regulation of virus replication, and meanwhile provides a potential cell resource for efficient production of cell-based avian virus vaccines.


Subject(s)
Flavivirus Infections , Flavivirus , Interferon Type I , Poultry Diseases , Animals , Ducks , Chickens/genetics , Transcriptome , Flavivirus/genetics , Cell Line , Interferon Type I/genetics , Antiviral Agents , Apoptosis , RNA , Interferon-alpha/genetics , Zinc
2.
Cytokine ; 153: 155849, 2022 05.
Article in English | MEDLINE | ID: covidwho-1783275

ABSTRACT

As a member of JAK family of non-receptor tyrosine kinases, TYK2 has a crucial role in regulation of immune responses. This protein has a crucial role in constant expression of IFNAR1 on surface of cells and initiation of type I IFN signaling. In the current study, we measured expression of IFNAR1 and TYK2 levels in venous blood samples of COVID-19 patients and matched controls. TYK2 was significantly down-regulated in male patients compared with male controls (RME = 0.34, P value = 0.03). Though, levels of TYK2 were not different between female cases and female controls, or between ICU-admitted and non-ICU-admitted cases. Expression of IFNAR1 was not different either between COVID-19 cases and controls or between patients required ICU admission and non-ICU-admitted cases. However, none of these transcripts can properly diffrentiate COVID-19 cases from controls or separate patients based on disease severity. The current study proposes down-regulation of TYK2 as a molecular mechanism for incapacity of SARS-CoV-2 in induction of a competent IFN response.


Subject(s)
COVID-19 , Female , Humans , Male , Proteins/metabolism , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/metabolism , SARS-CoV-2 , TYK2 Kinase/genetics , TYK2 Kinase/metabolism
3.
J Clin Immunol ; 42(3): 471-483, 2022 04.
Article in English | MEDLINE | ID: covidwho-1653615

ABSTRACT

BACKGROUND: Inborn errors of immunity (IEI) and autoantibodies to type I interferons (IFNs) underlie critical COVID-19 pneumonia in at least 15% of the patients, while the causes of multisystem inflammatory syndrome in children (MIS-C) remain elusive. OBJECTIVES: To detect causal genetic variants in very rare cases with concomitant critical COVID-19 pneumonia and MIS-C. METHODS: Whole exome sequencing was performed, and the impact of candidate gene variants was investigated. Plasma levels of cytokines, specific antibodies against the virus, and autoantibodies against type I IFNs were also measured. RESULTS: We report a 3-year-old child who died on day 56 of SARS-CoV-2 infection with an unusual clinical presentation, combining both critical COVID-19 pneumonia and MIS-C. We identified a large, homozygous loss-of-function deletion in IFNAR1, underlying autosomal recessive IFNAR1 deficiency. CONCLUSIONS: Our findings confirm that impaired type I IFN immunity can underlie critical COVID-19 pneumonia, while suggesting that it can also unexpectedly underlie concomitant MIS-C. Our report further raises the possibility that inherited or acquired dysregulation of type I IFN immunity might contribute to MIS-C in other patients.


Subject(s)
COVID-19 , Interferon Type I , Autoantibodies , COVID-19/complications , Child, Preschool , Cytokines , Humans , Receptor, Interferon alpha-beta/genetics , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
4.
Viruses ; 14(1)2021 12 29.
Article in English | MEDLINE | ID: covidwho-1639272

ABSTRACT

Inactivated vaccines based on cell culture are very useful in the prevention and control of many diseases. The most popular strategy for the production of inactivated vaccines is based on monkey-derived Vero cells, which results in high productivity of the virus but has a certain carcinogenic risk due to non-human DNA contamination. Since human diploid cells, such as MRC-5 cells, can produce a safer vaccine, efforts to develop a strategy for inactivated vaccine production using these cells have been investigated using MRC-5 cells. However, most viruses do not replicate efficiently in MRC-5 cells. In this study, we found that rabies virus (RABV) infection activated a robust interferon (IFN)-ß response in MRC-5 cells but almost none in Vero cells, suggesting that the IFN response could be a key limiting factor for virus production. Treatment of the MRC-5 cells with IFN inhibitors increased RABV titers by 10-fold. Additionally, the RABV titer yield was improved five-fold when using IFN receptor 1 (IFNAR1) antibodies. As such, we established a stable IFNAR1-deficient MRC-5 cell line (MRC-5IFNAR1-), which increased RABV production by 6.5-fold compared to normal MRC-5 cells. Furthermore, in a pilot-scale production in 1500 square centimeter spinner flasks, utilization of the MRC-5IFNAR1- cell line or the addition of IFN inhibitors to MRC cells increased RABV production by 10-fold or four-fold, respectively. Thus, we successfully established a human diploid cell-based pilot scale virus production platform via inhibition of IFN response for rabies vaccines, which could also be used for other inactivated virus vaccine production.


Subject(s)
Diploidy , Interferons/pharmacology , Rabies Vaccines/immunology , Rabies virus , Rabies/prevention & control , Animals , Antibodies, Viral , Cell Line , Chlorocebus aethiops , Gene Expression , Humans , Interferons/genetics , Receptor, Interferon alpha-beta/genetics , Vaccines, Inactivated/immunology , Vero Cells
5.
J Clin Immunol ; 42(1): 19-24, 2022 01.
Article in English | MEDLINE | ID: covidwho-1491285

ABSTRACT

BACKGROUND: Interferons (IFNs) play a crucial role in antiviral immunity. Genetic defects in interferon receptors, IFNs, and auto-antibodies against IFNs can lead to the development of life-threatening forms of infectious diseases like a severe form of COVID-19. CASE PRESENTATION: A 13-year-old boy with a previously reported homozygous loss-of-function mutation in interferon alpha/beta receptor subunit 1 (IFNAR1) (c.674-2A > G) was diagnosed with severe COVID-19. He had cold symptoms and a high-grade fever at the time of admission. He was admitted to the pediatric intensive care unit after showing no response to favipiravir and being hypoxemic. High-resolution computed tomography (HRCT) scanning revealed lung involvement of 70% with extensive areas of consolidation in both lungs. Antibiotics, interferon gamma (IFN-γ), remdesivir, methylprednisolone pulse, and other medications were started in the patient. However, remdesivir and methylprednisolone pulse were discontinued because of their adverse side effects in the patient. His general condition improved, and a few days later was discharged from the hospital. CONCLUSION: We reported a patient with severe COVID-19 who had a mutation in IFNAR1. Our finding suggests that patients with IFNAR1 deficiency are prone to severe forms of COVID-19. Besides, IFN-γ therapy may be a potential drug to treat patients with defects in IFN-α/ß signaling pathways which needs further investigations.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Receptor, Interferon alpha-beta/deficiency , Adolescent , COVID-19/genetics , Humans , Interferon-gamma/therapeutic use , Male
SELECTION OF CITATIONS
SEARCH DETAIL